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Dimerization of Ethynylcyclopentadienylmetal Complexes
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Heating of ©buky ethynyltetramethylcyclopentadienylmetal
complexes, RC=CH (R= Me,C;Rh(cod), Me,Cilr(cod), Me,CFe
(CMeH)), in the presence of catalytic amounts of Ru(H),(CO)PPh,),
afforded the comesponding butatriene, RCH=C=C=CHR. The
rthodium complex was stepwise hydrogenated by Ru(H),(CO)}PPhy),
to give a butadiene complex, RCH=CH-CH=CHR, whose molecular
structure was determined by X-ray diffraction analysis.

The transition metal-catalyzed dimerization of terminal alkynes has
been known for many years.! The formations of 1,3-disubstituted
enynes from the head-to-tail coupling and of 1,4-disubstituted enynes
from the tail-to-tail coupling of terminal alkynes have been extensively
reported. However, there are few reports about the formation of
butatriene from the formal coupling of two vinylidene moieties derived
from a terminal alkyne. Examples are only limited to the dimerization
of tert-butylacetylene and trimethylsilylacetylene into 1,4-di-tert-butyl-
butatriene and 1,4-bis(trimethylsilyl)butatriene by Ru(H),(CO)PPh,),
and [Ru(cod)(cot)] / PR, respectively,” and benzylacetylene into 1,4-
dibenzylbutatriene by Ru(H),(C;Me,)(PR,).> It is suggested that the
formation of butatriene is largely controlled by the bulkiness of both
the starting alkyne and the ancillary ligands linked to the ruthenium
center™ In this context, we attempted the synthesis of the terminal
alkynes substituted with bulky tetramethylcyclopentadienylmetal
moieties and the dimerization to the corresponding butatrienes.

RC=C-CR=CH,
gem-enyne

RCH=C=C=CHR
cis, trans-butatriene

RC=C-CH=CHR
cis, trans-enyne

The treatment of (trimethylsilylethynyltetramethylcyclopentadiene®
with butyllithium and the subsequent reaction with [MCl(cod)],
(M=Rh, Ir) gave the corresponding cyclopentadienyl-metal complexes,
(Me,;SiC=CCMe,)M(cod) (M= Rh (1a), Ir (1b)) in good yield(~60%).
Hydrolysis with KOH afforded the terminal alkynes,
(HC=CC;Me)M(cod) (M= Rh (2a), Ir (2b)), in reasonable yields.’
Octamethylethynylferrocene  (HC=CC,Me)Fe(CMeH) (3) and
ethynylferrocene (HC=CCJH,)Fe(C;H;) (4) were prepared according

to the literature.*®
KD@—ESiMe; H
M M
2a : M= Rh(cod)

1a:M=Rh
1la) : M= ﬁ(c(gg;j) 2b : M= Ir(cod)
3 : M=Fe(Me,CsH)

The heating of 2 in toluene at 80 °C in the presence of
Ru(H),(CO)PPhs), (monomer/catalyst=20/1) afforded the butatriene
dimer, RCH=C=C=CHR (R= Me,C;Rh(cod) (5a), MeC,Ir(cod)
(Sb))’, along with small amounts of the geminal enyne, trans enyne
and cis enyne, and a hydrogenation product of the starting alkynes
(H,C=CHCMe,M(cod) (M= Rh (6a), Ir (6b))* which were identified
from the proton nmr spectra (entries 1 and 7 in Table 1) (Scheme 1). It
is deduced from the proton nmr spectra showing two broad singlets of

Ru(H);(CO)(PPhs)g
RC=CH - RCH=C=C=CHR + RCH=CH,

2a "R=Me,CsRh(cod)" 5a 6a

+ RC=C—CR=CH,; + RC=C—CH=CHR
Scheme 1. Dimerization of 2a catalyzed by Ru(H),(CO)(PPhy),.

vinylic protons at 8 ~6.1 and ~6.2 that 5a and 5b consisted of an
approximate 3:1 mixture of cis and #rans isomers, although the
stereochemistry could not be unequivocally determined. The turnover
number of this catalytic reaction is low (~5) but a higher number (15)
is obtained by using an excess of 2a (entry 2). An increase in the ratio
resulted in the concomitant formation of the butadiene complex,
RCH=CH-CH=CHR (R= Me,C;Rh(cod) (7)) (entry 3)° A further
increase in the catalyst ratio (1/1) resulted in the exclusive formation of
6a, suggesting that the initial step of the catalysis is the generation of a
zero-valent ruthenium species by consuming two hydride ligands
(entry 4). In order to confirm the origin of 7a, 5a was treated with
Ru(H),(CO)YPPh,); at 80 °C and followed by proton nmr. The
stepwise hydrogenations of 5a to 7a and then to a butene complex,
RCH=CH-CH,-CH,R (R= Me,CRh(cod) (8a))", were observed,
suggesting the formation of 7a through 5a. The #rams, trams
stereochemistryof 7a was determined by X-ray diffraction analysis and
is depicted in Figure 1."° The molecule has a crystallographic center of
symmetry. The cyclopentadienyl ring and the diene moiety are nearly
coplanar.

Figure 1. ORTEP view of 7a.

The [Ru(cod)(cot)] / PPh; (1/3) system was also found to catalyze
the formation of 5a although the yield is rather low (entry 5).
Dimerization of the bulky ethynylferrocene 3 by Ru(H),(CO)YPPh,),
similarly proceeded and produced the butatriene,
RCH=C=C=CHR (R= Me,C,Fe(C;MeH) (9))"" (entry 8). However,
the dimerization of the simple ethynylferrocene 4 by the same catalyst
produced only enynes (gem : trans : cis = 1.25 : 1 : 2.25 ) in very low
yield. (entry 9). In contrast to these ruthenium catalysts, even a bulky
terminal alkyne 2a was dimerized by Rh(PPh;),Cl to give enynes
(gem : trans : cis = 2.8 : 24 : 1 ) without forming the butatriene Sa
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Table 1. Dimerization of terminal alkynes *
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Monomer Product /% ;
Entry Monomer Catalyst Jcatalyst Butatriene® Butadiene . Enyne :

geminal trans cis
1 2a Ru(H),(CO)PPh,), 20:1 45 0 tr tr tr
2° 2a Ru(H),(COXPPh,), 100:1 28 0 tr tr tr
3 2a Ru(H),(CO)(PPh,), 7:1 22 21 tr tr tr
4 2a Ru(H),(CO)(PPh,), 1:1 0 tr 0 0 0
5 2a [Ru(cod)(cot)] / PPh,(1/3) 20:1 10 0 tr tr tr
6 2a Rh(PPh,),Cl 10:1 0 0 28 24 10
7 2b Ru(H),(CO)(PPh,), 20:1 48 0 tr tr tr
8 3 Ru(H),(CO)(PPh,), 20:1 53 0 0 0 0
9 4 Ru(H),(CO)(PPh,), 20:1 0 0 5 4 8

“Reaction condition: 80 °C in toluene. "2a was recovered in 40% yield. ‘R-CH=CH, was formed in 40% yield.
“Isolated yield. “Determined from the 'H NMR spectrum.

(entry 6).

In conclusion, we have shown that the dimerization of terminal

alkynes having bulky tetramethylcyclopentadienylmetal moieties by
ruthenium complexes, Ru(H),(CO)}PPhs), or [Ru(cod)cot)] / PPh,,
proceeds to give the corresponding novel butatriene dimer complexes.
The same mechanisum as already suggested for the dimerization of £ —
butylacetylene may also be operative in this case.
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5a: red crystals, FT-IRKBr); v (C=C) 1604 cm’. 'H NMR
(CDCly); 6 (ppm) 1.80 (s, 3H), 1.82 (bs, 12H), 1.88 (bs, 9H), 1.93
(m, 8H), 2.15 (m, 8H), 3.14 (m, 8H), 6.10 (bs, 1.5H), 6.15 (bs,

10

12

0.5H). M"= 712.2. 5b: orange crystals. FT-IR(KBr); v (C=C)
1610 cm™. 'H NMR (CDCL); 8 (ppm) 1.83 (m, 8H), 1.90 (s, 3H),
1.91 (bs, 12H), 1.92 (bs, 9H), 2.02 (m, 8H), 2.97 (m, 8H), 6.13 (bs,
1.5H), 6.20 (bs, 0.5H).

6a: 'HNMR (CDCL); 8 (ppm) 1.77 (s, 6H), 1.86 (s, 6H), 1.91 (m,
4H), 2.14 (m, 4H), 3.00 (m, 4H) 5.02, 5.05 (d, 1H, /2.0 Hz), 5.15,
5.19 (d, 1H, /2.0 Hz), 649, 6.54 (d, 1H, J~=11.5 Hz). 6b: 'H
NMR (CDCL); & (ppm) 1.80 (m, 4H), 1.86 (s, 6H), 1.90 (s, 6H),
2.00 (m, 4H),2.83 (i, 4H) 5.14, 5.17 (d, 1H, 1.9 Hz), 5.20, 5.25
(d, 1H, 1.9 Hz), 6.41, 645 (d, 1H, ~11.2 Hz).

7a: yellow-orange crystals. FT-IR(KBr); v (C-H) 3038 cm’, v
(C=C) 1610 em™. 'H NMR (CDCL); 5 (ppm) 1.82 (s, 12H), 1.87
(s, 12H), 1.91 (m, 8H), 2.14 (m, 8H), 3.04 (m, 8H), 6.28-6.42 (m,
4H).

Crystallographic data. 7a: CgH,Rh,, Fw = 714.64; monoclinic,
space group P2/n (#14); a = 8260(3) A, b= 14311(4) A, c =
14266(6) A, B= 103.84(5)°, V = 1637(1) A Z =2; D= 1.449
gem®; R=0.035, Rw=0.036.

8a: yellow crystals. 'H NMR (CDCL); § (ppm) 1.75 (s, 6H), 1.77
(s, 6H), 1.81 (s, 6H), 1.84 (5, 6H), 1.90 (m, 8H), 2.13 (m, 8H), 2.29
(m, 4H), 2.94 (m, 8H), 5.69 (dt, 1H) 6.11 (d, 1H).

9: dark purple crystals. FTIR(KBr); v (C=C) 1605 e, 'H NMR
(CDCL); 8 (ppm) 1.67 (s, 1.2H), 1.68 (s, 10.8H), 1.73 (bs, 12H),
1.81 (bs, 12H), 1.95 (bs, 12H), 3.30 (s, 2H), 6.05 (bs, 1.8H), 6.16
(bs, 0.2H).



